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ABSTRACT

The behavior of a shallow arch and a thin ring ,der a dynamic

pulse loading is studied for a wide range of g.ometric and load

parameters. The nonlinear dynamic response and static load

deflection characteristics of the systems are related and employed

to define dynamic elastic snapping and dynamic elastic buckling.

When such a relationship cannot be established, the mechanism of

dynamic elastic-plastic buckling is introduced. Critical dynamic

load criteria are specified, and critical dynamic load data are

developed as a function of structural geometry and load duration.

Finally, a classification scheme for dynamic load problems is

suggested.
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NOMENCLATURE

A = area of the arch cross-,section

an(T) = generalized 4oordinate describing nondimensional transverse
displaceme-it of the arch

C m(r) = generalized coordinate deszribing circumferential displacement of
the ring in mth nonsymmetric mode

E = Young's modulus

e = ratio of initial height of arch to radius of gyration of arch
cross-section

g = (pR/Eh), nondimensional pressure parameter in the ring problem

= critical value of g required for static buckling

g = critical value of g required for dynamic buckling

h = thickness of the ring or arch

I = fja d q diT, impulse parameter in arch problem

3 =/ f dg dT, impulse parameter in ring problem.

k = radius of gyration of the arch cross-section

L = span of the arch

p = pressure load

q = (p/EAk 3 )(L / r ) , nonclimensional pressure load in arch problem

ql = amplitude of nondimensional pressure load acting upon the arch
(see Eq. 1)

q- = critical value of qj required to produce snapping under a static
pressure load

q, = critical value of ql required for snapping under a dynamic pressure
load

r( )= generalized coordinate describing nondimensional radial displace-
ment in axisymmetric mode
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rm(T) = generalized coordinate describing nondimensional radial
displacement of the ring in mth nonsyrumetric mode

t = time

V(OT) = circumferential displacement of the ring (see Figure Ib)

w(g,T) = transverse position of the middle surface of the arch (see Figure Ia)

W(,T) = radial displacement of the ring (see Figure Ib)

x = Cartesian coordinate along span of the arch (see Figure Ia)

(e,-r) = W(O,T)/R, nondimensianal radia) displacement Uf the ring

i(gT) = w(g, T)/k, nondimensional transverse position of the middle surface
of the arch

O = angular coordinate for the ring (see Figure lb)

=. x/L nondimensional Cartesian coordinate for the arch

Ps = mass density

a. = yield stressy

T = (I/R)(E/pS) 1/ t, nondimensional time in the ring problem

-t = (T /L)(EAkZ/Psh)lI/Z t, nond.;mensional time in the arch problem
T 0 = dimensionless period of the a:.dsymmetric mode of the ring

o

T 1  = dimensionless period of the fundamental symmetric mode of the
arch

Td  = nondimensional duration of the pressure load

(O, T) = V(e, T)/R, nondimensional circumferential displacement of the ring
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1. INTRODUCTION

Certain types of elastic structure can exhibit instability when they are

subjected to static loads of sufficient magnitude. Since this phenomenon can

coincide with excessive deformation or with severe degradation of structural

stiffness, it is of considerable practical importance in structural design. As

a result, a substantial amount of literature on the subject has been publiahed

(see References 1-4 for extensive bibliographies). Primarily these publica-

tions deal with determination of the critical levels of static load at which

instability is exhibited. Such loads may be referred to as critical instability

loads. If they also correspond to a significant dlgradatior. in the capability

of the structure, they may be termed critical structural loads.

This report is concerned with a related problem: namely, the behavior of

such structures when the external loading is time-dependent. In particular,

we wish to determine critical levels of dynamic load for "typical" structural

systems and to see how these dynamic loads compare with the corresponding

critical static loads.

The selection of the typical structural systems is based upon elastic stability

theory. Since a major part of this theory deals with perfect elastic structures

thateither "snap" or "buckle" under static load (these phenomena are reviewed

in the following section), it was decided to select a simple exarr-le of each of

these categories. The selected systems are the shallow arch (see gure la)

and the thin circular ring (see Figure lb), both structures being subject to an

external compressive pressure load.

SThe first problem represents a "snapping" system, while the second ropre-

srits a "buckling- system. The arch is assumed to be simply supported, to

'We consider a structurc to be perfect if the critical static load can be obtained
as an eigenvalue of the conventional equilibrium path bifurcation analysis.



A%

Figure la. Shallow Sinusoidal Arch Problem



UNDEFORMED DEFORM ED
MIDDLE MIDDLESURFACE SURFACE

Figure lb. Circular Ring Problem
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have an initial sinusoidal shape, and to be of uniform thickness; the circular

ring is also assumed to be of uniform thickness and of rectangular cross-

section. The material of the two structures is assumed to be linearly

elastic.

The time history of the external pressure loading was selected to be as shown

in Figure 2, i. e., the load is applied instantaneously and maintained at a con-

stant level for a specified interval of t: me T d. The duration of this loading

is allowed to vary between the limits of zero (impulsive load) and infinity

(step load). The spatial distribution of the load is assumed to be sinusoidal

in the case of the arch and uniform in the case of the ring.

The critical values of the dynamic load are defined upon the basis of the non-

linear structural response. These loads are determined over the specified

range of pulse loads for a wide range of the arch and ring geometric param-

eters. Finally, the critical dynamic loads are compared with the correspond-

ing critical static loads.

-4-
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2. STATIC LOAD PROBLEM

Before embarking upon the determination of the dynamic response of the two

systems, we will first briefly review the analysis and res' its of the corre-

sponding static load problem. This review will enable us ':o illustrate the

behavior of suapping and buckling structures and will provide the critical

static loads required for comparison with the corresponding critical dynamic

load results. This analytical approach consists of determining the equilibrium

states of the two systems and then examining the stability of these states with

respect to infinitesimal perturbations. The stability analysis yields a critical

instability load, which is defined as the lowest load at which the initial equilib-

* rium path (i. e., the path that emanates from the unloaded state) becomes

unstable. r xamination of the post-critical behavior of the systems then indi-

cates whether the critical instability loads can be considered as critical loads

for the structure.

2. 1 SHALLOW ARCH

In the example of the shallow arch, the external pressure load is

q = q, sing (1)

Following References 5 and 6, the transverse position l(g) of the middle sur-

face of the arch is represented by

y(g) = e sin E + a I sin t + a2 sin2Z (2)

where the term e sin t describes the initial shape of the arch (see Nomencla-
ture for definitions). The genoralized coordinates a. and a- denote the ampli-

tude of the displacement in the fundamental symmetric and nonsymmetric

modes, respectively. The nonlinear algebraic equations governing the equilib-

riurn states of the system were solved in References 5 and 7. It was found

that the equilibrium states involve only the symmetric mode al sin g for

0 -< e s V /, i. e., the generaiized coordinate a is identically equal tc zero

-6-



in this range; whereas, for e > N/_7 distinct symmetric and nonsymmetric

equilibrium states co-exist for certain ranges of the load parameter q. Typi-
cal static load deflection curves for the ranges 2 < e _ J'and e> f'are

illustrated in Figures 3a and 3b, respectively. The solid curves in these

figures describe the symmetric mode equilibrium states, while the dashed

line in Figure 3b represents the symmetric mode component of the nonsym-

metric equilibrium states (i.e., states with a1 # 0, a # 01.

We consider compressive pressure loads q i 0, and for convenience we limit

our considerations to the range 0s e : Z0. For 0 -e 5 2, it is found that the

static deflection is a single-valued function of the load and that the associated

equilibrium states are always stable. For 2 < e5 2 the arch becomes

unstable "'ith respect to symmetric mode perturbations at the extremum of

the load deflection curve (point A in Figure 3a). Under such conditions the

arch snaps through and vibrates about a large deflection equilibrium state

(point D in Figure 3a); these large deflection states are stable and are

referred to as snapped equilibrium states (the branch CDE of each curve

shown in Figure 3 is the snapped branch of the load deflection curve). The

phenomenon in this case involves only the symmetric mode and is referred to

as "snapping. " The critical value of the load parameter at which instability

occurs in this range is

C + (e - 4) 3 /4

2 < e_ 5 27-

For e > 5/2J the arch becomes unstable with respect to infinitesimal pertur-

bations in the nonsymmetric mode et the intersection of thc sym...etric alu

nonsymmetric equilibrium states (i. e., at the bifurcation point A in F-Igure 3b).

Again the arch snaps through and vibrates about a large deflection equilibrium

state (point D in Figure 3b). Since this phenomenon involves a bifurcation

point and both the symmetric and nonsymmetric modes of the system, it is

-7-



E

CD

0U

0

GENERALIZED COORDINATE, aI

a. TYPICAL LOAD DEFLECTION CURVE: 2 <e < 4.69

-E

/
q A D

N

UNLOADED \
STATE

0 S GENERALIZED

COORDINATE, Og

C

b. TYPICAL LOAD DEFLECTION CURVES: e > 4.69
Figure 3. Static Load Deflection Curves for Shallow Arch

-8-



.1
referred to as "snap-buckling." The critical value of the load parameter for

instability in this range is

1= e + 3(e 2 
- 16)1/2 (4)

e >

Since the critical instability loads of Eqs. 3 and 4 also correspond to the

occurrence of large deflections, they are considered to be the critical static

loads for the system.

2. 2 CIRCULAR RING

In the ring example the external pressure load is uniform. The radial and

angular displacement components of the middle surface of the ring (see

Figure lb) are described by

= r + r sin me (5a)

m

where ro denotes the axisymmetric component of the radial displacement

and rm and cm describe the nonsymmetric component of the displacement.

Eqs. 5a and 5b satisfy the condition that the displacement be continuous and
periodic around the circumference of the ring. The generalized coordinates

ro, r m  and cm are governed by a set of coupled nonlinear algebraic equa-

tions. The solution of these equations determines the static load deflection

characteristics of the ring.

* .An example of these characteristics is shown in Figures 4a and 4b, which

respectively illustrate the axisymmetric and nonsymmetric components of

the radial displacement. The load deflection curves of the ring are seen te,

-9-
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exhibit a bifurcation point at a specific level of the pressure load (point A in

tFigures 4a and 4b). For loads that are lower than this level, the equilibrium

states are axisymmetric (i. e., r 0 0, rm  0, c 0); whereas, for loads

that are higher than the bifurcation load, both axisymmetric equilibrium states

and nonsymmetric equilibrium states (i. e. ro  0, r A 0, c A 0) can

co-exist. An infinitesimal stability analysis of the axisymmetric equilibrium

states (path OC in Figure 4a) reveals that they become unstable with respect

to nonsymmetric perturbations at the appropriate bifurcation points. The

most critical case is associated with the fundamental nonsymmetric mode of

deformation (i. e., for m = Z). The bifurcation point and loss of stability for

this case ocr ur at the following value of the load parameter g:

I - 1 (h(S= )(6)

where h and R denote the thickness and radius of the ring, respectively.

For g > g, the ring adopts a stable nonsymmetric equilibrium state (branchAB

in Figures 4a and 4b). The phenomenon in this case involves a bifurcation

point but does not involve snapping. It is referred to as "buckling,' and the

post-critical stable nonsymmetric equilibrium states are referred to as post-

buckled equilibrium states. It will be noted in this case that the appearance

of instability corresponds to a significant loss in the stiffness of the struc-

ture (see Figure 4). Thus, the critical instability load given by Eq. 6 can be

treated as the critical static load for the ring structure.

2.3 FINAL REMARK

The essential difference between the buckling and snapping systems lies in

the existence or non-existence of stable equilibrium states adjacent to the

initial equilibrium path for values of the load parameter slightly greater than

the critical instability load. If such states do not exist, the system snaps

with increase of load. If they do exist, the structure suffers a loss of stiff-

ness, the severity of this loss depending upon the particular buckling system.

-.11-
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3. DYNAMIC LOAD PROBLEM

This section explores the behavior of the buckling and snapping systems when

they are subjected to selected dynamic loading. The response of either sys-

tem is determined by numerical integration of the governing nonlinear equa-

tions of motion. The critical dynamic loads are directly defined upon the

basis of this response; the infinitesimal stability analysis is dispensed with

in this case, Efince a previous investigation by the ._thor (Reference 6) demon-

strated that the critical dynamic loads determined from infinitesimal stability

considerations are not necessarily of practical significance.

3. 1 SHALLOW ARCH

The transverse position 1( , T) of the arch is represented by Eq. 2 where the

generalized coordinates a1 and a are now functions of time. The nonlinear

differential equations governing these generalized coordinates are of the form

d a1  da 1  2
d- + + 1 a1 + Fl(ala 2 )+ ql ( T ) = 0 (7)dTz

d az da 2  z
S +y-- 2 a2 +a 2 FZ(al,a 2 ) = 0 (8)dT

where Y denotes a viscous damping coefficient. The constants wl and W Z
are proportional to the free vibration frequencies of the fundamental

The partial differential equations governing the elastic response of the two
systems are presented fr rfence in th'- Ap.... a d lop... .. ..... . ... . , ,pc ,nd , a detailed developm ent
of these equations can be found in References 6 and 8.

This lack of significance arises because the growth of the unstable motions
can be rapidly suppressed by nonlinear terms that are typically neglected in an
infinitesimal stability analysis. Thus, unstable infinitesimal motions produced
by a dynamic loading do not necessarily develop into large amplitude responses.

-1?



symmetric and nonsymmetric modes, respectively; the terms Fl(a1 a2 )

and P 2 (a1 , a 2 ) are nonlinear coupling terms.

It will be noted that the symmetric mode is directly excited by the external

load (see the inhomogeneous term ql(T) in Eq. 7). The nonsymmetric mode

respo-ise is parametrically excited by the response in the symmetric mode

by means of the term FZ(a, a?) in Eq. S. Again we consider the behavior of

the arch for q _: 0 and2 < e E 20. The response to a given time-dependent

pressure load is obtained by numerical integration of Eqs. 7 and 8, the inte-

gration scheme employed being a variable step size, fifth order, predictor-

corrector method (Reference 9).

The procedure followed consists of fixing the load duration and obtaining the

response at successively higher values of the load parameter. For most of the

range of interest, i.e., the range q _> 0 and2 < e s 20, the maximumlevelof this
response is found to exhibit a distinct jump at a particular level of the load (an

example of this behavior is shown in Figure 5 for the case of a step loading, i. a.,

Td = CO). The appearance of this jump corresponds to the development of a

response that encompasses a snapped equilibrium state of the system " (see

Figure 5). This response is considered as constituting dynamic elastic snap-

ping. The critical dynamic load for snapping is then the lowest load required to

produce such a response. This criterion can be applied over the comjlete range

.)f pulse loads (i. e., between the impulse and step load limits)for those arch geom-
etries that possess snapped equilibrium states for ql - 0.

If the system does not possess a snapped equilibrium state for ql = 0, it may

be necessary to introduce another criterion in order to define a critical impul-

sive load. A possible procedure for employment in such a case would consist

of imposing a maximum stress limitation and basing the critical load upon

th:s criterion. This is the procedure that is adopted later for the problem of

This equilibrium state can be the snapped equilibrium state corresponding
to the specified load level q I or the snapped equilibrium state corresponding
to q, = 0. The first case is appropriate for long duration loads, while the
second case is appropriate for short duration impulsive loads.

-13-
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the circular ring subjected to an impulsive load. However, since the initial

criterion suffices for most of the specified range of arch geometries, we

will defer discussion of alternate criteria until later.

Employing the initial criterion, we obtain critical dynamic loads for a variety

of arch geometries and load conditions. An example of the variation of the

critical load with arch geometry is shown in Figure 6 for the case of a step

load and zero damping. The results are presented in terms of the critical

load ratio q j/ql and the geometric parameter e. Examining this figure, we

note that the critical dynamic loads q, are less than the corresponding criti-

cal static loads ql for the range 2 < e < 8. 6, and that they are greater than

the critical static loads for e > 8. 6. These latter "superstatic" step loads

are reduced to the level of the critical static loads by the presence of small

damping (Reference 6); on the other hand,the "substatic" loads are increased

by the presence of damping.

$ * The response of the arch under a supercritical step load is found to be

* primarily in the symmetric mode al(T) sin g for the range Z<e<4. 5. An

example of this type of response is shown in Figure 7. The behavior of the

arch in this range is essentially a single degree of freedom phenomenon and
is adequately described by the symmetric mode response. This type of

dynamic snapping is referred to as "direct" snapping (Reference 6). For

e > 4. 5, the mechanism of snapping involves a complicated interaction between

the ;ymmetric and nonsymmetric mode response. This interaction consists

of the parametric excitation of the nonsymmetric mode by the initial response

in the symmetric mode followed by the interaction of this excited response

back with the symmetric mode. An exa,.-ple of this type of response is shown

in Figure 8. From the figure we see that the nonsymmetric mode response

grows under the parametric excitation supplied by the symmetric mode, and.

The criterion based upon a response encompassing a snapped equilibrium
state can be applied for e a 4. At lower values of e the specified type of arch
does not possess a snapped equilibrium state at ql = 0.

An equivalent jump criterion has been employed in References 10-13.

-l4--
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unlike the direct snapping mechanism, the arch vibrates for a number of

cycles prior to snapping. The phenomenon in this case is referred to as

"indirect" or "parametrically induced" snapping (Reference 6).'

The important difference between this mechanism and the direct snapping

phenomenon is the essential role played by the nonsymmetric mode response.

The effect of load duration on the critical load level is illustrated in Figure 9

for two arch geometries. These geometries (e = 4 and e = 7) were selected

to represent cases where the snapping phenomenon is controlled by the direct

and indirect snapping mechanisms, resnectively. The results are presented
in terms of the critical load ratio qj ql and the ratio TdT , where T 1

denotes the period of the fundamental symmetric mode. We note that the

general features of the two critical load curves are the same: namely, an

increase in critical load ratio with decrease in the load duration ratio. The

difference in the detailed behavior of the load curves is due to the different

mechanisms of snapping. This detailed behavior depends quite strongly upon

the particular arch geometry.

When the ratio Td/Tl becomes sufficiently small, the impulse imparted to

the structure rather than the load level becomes the most significant load

parameter. The critical values of the impulse parameter I are shown as

functions of Td/Tl in the inset of Figure 9. The variation of the critical

impulse parameter with the geometric parameter is shown in Figure 10 for

the limiting case of TdI T1 - 3.

The need to satisfy the conditions of parametric resonance as a prerequisite
*for the occurrence of this mechanism has been employed (Reference 6) to

explain the character of the critical step load curves for e > 4. 5.

-19-
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The almost linear character of this variation is related to two facts:

a. The minimum amount of kinetic energy input required to surmount
the potential "barrier" between the unloaded and snapped equilib-
rium states of the arch is almost proportional to the square of the
geometric parameter e.

b. Satisfaction of the conditions of parametric resonance enables the
system to pass over into the snapped state at such energy input
levels.

It should be noted in passing that the linear variation does not persist at

somewhat higher values of e, since the parametric resonance conditions are

not satisfied at the foregoing minimum required impulse levels. Thus,

impulse levels higher than this minimum are required to produce snapping of

such arch geometries.

3. Z CIRCULAR RING

The radial and circumferential displacement components of the ring are again

represented by Eqs. 5a and 5b, where the generalized coordinates are now

treated as functions of time. The coordinates are governed by a set of coupled

nonlinear ordinary differential equations whose form is similar to Eqs. 7

and 8. The axisymmetric mode response r0 (r) is directly excited by the

loading. The nonsymmetric mode response is parametrically excited by the

axisymmetric response. The behavior of the ring is determined by numerical

integration of the nonlinear equations of motion. The numerical method and

procedure followed are similar to those employed in the problem of the

shallow arch.

An example of the variation (with load level) of the maximum radial displace-

ment in a nonsymmetric mode is presentedl in Figure 11 for the case of a step

loading (T. = C). Although the results are presented for a soecific nonsvm-

metric mode (m = 5), the important features are representative of the results

obta.ned for other nonsymmetric modes. From the figure we see that the

A detailed study of the nonlinear response of a circular ring under a step
pressure loading can be found in Reference 8.

-22-
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response level exhibits a rapid growth above a particular value of the load.

The appearance of this growth corresponds to the development of a response

that encompasses the LJrresponding post-buckled equilibriu n state of the

ring (see Figure 11). Such a response is considered as constituting dynamic

elastic buckling. The critical load for dynamic elastic buckling is then the

lowest load required to produce this type of response. This criterion is

employed to determine the critical values of the step load for the range

10 < R/h < 1300. These critical step loads are found to be associated with

the fundamental nonsymmetric mode. Their levels are essentially identical

to the corresponding critical static ','uckling loads. Thus,

4 k -R)E (9)
(Td = co)

An example of the response of the ring to a supercritical step load is shown

in Figure 12. The important interaction between the modes excited under

this loading is the parametric excitation of the nonsymmetric mode by the

response in the axisymmetric mode.

We find that this interaction is the important response mechanism when the

ring is subjected to an impulsive pressure load (i.e., Td/T << 1, where 0

denotes the period of the axisymmetric mode). However, in this case the

maximum response level does not exhibit any distinctive regions of rapid

growth that would serve to distinguish a critical value of the dynamic load.

An example of this type of behavior is illustrated in Figure 13. The variation

of the response level in this figure should be compared with that shown in

Figures 5 and 11.

In the absence of such distinguishing features in the elastic response problem,
we introduce the idea of plastic deformation and hypothesize the following

"failure" mechanism: namely that the ring may be considered to have "failed"

if the bending stresses developed. in thb response result in the formation of
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plastic hinges. However, rather than analyze the extremely complicated

elastic-plastic response problem, we take a conservative approach and con-

sider that the system is critical when the maximum elastic stress just equals

the yield stress of the material. Thus, the critical impulsive load is the

lowest impulsive load required to produce such a stress level. We will refer

to this phenomenon as dynamic elastic-plastic buckling.

An example of the critical impulse levels determined with the use of this

definition is shown in Figure 14. The results are presented in terms of the

impulse parameter J and the geometric parameter R/h. These results are

obtained for the case of y/E equal to 0. 004, where a denotes the yield

stress and E represents Yo rng's modulus of the material. The mode num-

bers m of the associated critical nonsymmetric modes are also presented in

Figure 14. It will be rioted that, unlike the step load problem, the critical

response under impulsive loads involves the higher nonsymmetric modes of

the system.

Finally, we illustrate the effect of load duration on critical load levels in

Figure 15. The results are obtained for R/h equal to 1Z9 and are presented

in terms of the ratios gI" and T d/ o . The critical load curve exhibits the

same general feature that was noted Ln the case of the arch: anincrease in

critical load level with decrease in load duration. However, the curve in

this case is composed of two distinact branches, these branches corresponding

to the phenomena of dynamic elastic and dynamic elasti':-plastic buckling.
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4. COMPARISON OF CRITICAL LOADS

In the preceding section we have described the behavior of our two sample

systems under the specified type of dynamic loading. We will now see how

the critical dynamic loads compare with the corresponding critical static

loads. This comparison may best be made by examining Figures 9 and 15.

These figures illustrate the dependence of the ratio of the critical dynamic

and static loads upon the ratioS rd/r I and rd/TO for the shallow arch and

circular ring. In both cases w- see that the most critical dynamic load con-

ditiona (i. e., conditions for the lowest value of the critical load ratio) corre-

spond to the case of a step load. However, there is an important difference

between the two systems: the minimum value of the critical load ratio is

appreciably less than unity in the case of the arch (about 0. 78 for the cases

shown in Figure 9), whereas it is equalto unity in the case of the ring.

Thus, particular arch geometries can exhibit dynamic weakening (i. e., col-

lapse at dynamic loads that are lower than the corresponding critical static

loads) if the load duration is sufficiently long. As a corollary to this we see

that the design of such systems against dynamic loads, if based upon the

critical static load, would prove to be unconservative. The load duration

required to produce such dynamic weakening, as measured by the ratio Td/ -I

depends strongly upon the type of mechanism controlling the snapping process.

This may be seen by comparing the two curves shown in Figure 9. There we

see that the critical load ratios are less than unity if Td/T I > 0.6 in the case

of direct snapping, and if Td/ r > 2. 8 for the case of indirect snapping. As the

ratios rd/ T 1 and Td/ T are reduced, the critical load ratios increase and the

systenis are able to withstand dynamic pressure loads that are substantially in

excess of the critical static pressures. Thus, static design in such cases would

be highly conservative.

"We should also note Vhat some 'indirect" snapping geometries do not exhibit
dynamic weakening (see diocussion of shallow arch problem in Section 3).
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5. COMPARISON WITH RELATED WORK

It is of interest to compare the present work with related studies in this field.

This comparison will illustrate the diversity of problems arising when the
A

external loading is time-dependent. Let us first consider buckling systems.

In this category we have studies of the buckling of elastic columns under

4 axial impact loads (References 19-Ui), of the response of plates to in-plane

compressive loads (Reference 29), and (,f the buckling of rings and cylinders

under external pressure loads (References 30-33).

The studies of the column problem can be divided roughly into three

categories:

a. Analyses that include the effect of axial inertial forces and con-
sider the propagation of the loading pulse in the column
(References 19-22)

b. Investigations that neglect the axial inertial forces and determine
the modes that are most highly excited by intense impulsive loads
(References 23-25)

c. Studies that neglect the axial inertial forces and determine the
response of initially imperfect structures to the specified dynamic
load (References 24, 26-28)

With the exception of Reference 28, the studies in Categories (b) and (c) are

based upon linear equations of motion, as are the earlier investigations in

the first category (References 19 and 20). The investigation of the plate

problem (Reference 29) also employs linear equations and falls within the

third category of analysis. References 30 and 31 study the response of

cylindrical shells to external pressure loads and are based upon nonlinear

We limi ourselves to the pulse tve of time-depen1ent Ioad ,a,;dered i.n th.
present paper. Studies of the dynamic response produced by specified motion
of structural boundaries or by loads that increase linearly with time can be
found in References 14-17, while a comprehensive discussion of dynamic
instability under periodic loading will be found in Reference 18.
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4

equations of motion. References 32 and 33 are linear analyses and are

concerned with the determination of the modes (of an infinitely long cylinder

or ring) which are most highly excited by intense impulsive pressure load.

These latter studies are similar to those in the second category of analysis

mentioned previously.

Of the various studies described above, the works of References 30 and 3 1 are

most similar to the buckling part of the present study. However, they are of

considerably less scope and only one of the investigations (Reference 30)

specifically considers the question of critical dynamic load." The other

investigations treat particular aspects of the dynamic load problem (stress

wave propagation, mode excitation, imperfect system response, etc. ). The

stress wave studies are appropriate to problems where the load duration is

comparable to the time required for a stress wave to traverse the system.

In the present study, stress wave effects are not expected to be significant

since the transit path iimply consists of the thickness of the structure. The

mode excitation studies have been used to explain the character of the post-

buckled deformation shapes produced by impulsive load. However, they have

a disadvantage in that they do not treat the practically important question of

critical load determination. The studies of the dynamic response of initially

imperfect structures can be considered as the dynamic load analogue of the

deformation analyses performed for initially imperfect structures subject to

the corresponding static loads. As such,these studies can be considered as

being complementary to the type of anal, sis carried out in the present

investigation.

'€Rf c ...... 30 introdc-tes a safe load based upon the total stress at any
point in the structure not exceeding the ultimate strength of the materiai.

TLe analysis of a perfect system subject to a static lead generally results
in a stability or eigenvalue problem; however, if the system is considered to
be initially imperfect.the analysis reduces to a deformation study (For example,
compare the analysis of perfectly straight and initially curved struts subject
to axial load).
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Now let us consider the investigations that treat snapping systems. In this

category we have the snapping of shallow domes, cones, curved panels, and

shallow arches under external pressure loads (References 10-13, 34-40) and

the snapping of circular cylinders under dynamic axial load (References 41-43).
A combined load problem involving the snapping of axially loaded cylinders
under dynamic lateral pressure loads is treated in References 42 and 44.

With the exception of References 41 and 43, these studies are based upon non-

linear equations of motion and are primarily concerned with determining the

structural response to the specified dynamic loading. This response is then

employed to obtain the critical values of the dynamic load, the determination

of these loads being effected with the use of a "jump" criterion that is equiva-

lent to the response criterion employed in the present study of snapping sys-

tems. These studies are clearly similar to the present analysis. However,

a large number of the previous investigations (see References 10-13, 34-38)

have been limited to the treatment of symmetric or axisymmetric types of

deformation. As a result of this limitation, such investigations do not treat

the indirect type of snapping phenomenon found to be important in the present

study. Thus, the resulting critical dynamic loads could prove to be unrealistic

for particular ranges of structural geometry.

A phenomenonological theory for the dynamic buckling of a circular cylinder

under axial impact load, including the effect of wave piopagation, is presented

in Reference 41. A linear analysis of mode excitation under dynamic axial

load is given in Reference 43.

Finally, mention should be made of two investigations that are concerned with

the use of simple models (Reference 45) and energy methods (Reference 46)
for the estimation of critical dynamic loads.

In some cases where the structure is analyzed as a single degree of freedom
system,an equivalent energy criterion has been employed (see References 10,
13, and 37).

-33-



6. CONCLUDING REMARKS

This report has comprised a detailed study of the behavior under dynamic

load of two particularly simple structural systems. The response of these

systems was determined for wide ranges of the geometric and load param-

eters, and because of the simplicity of the systems it was possible in many

instances to relate this response to the corresponding static load deflection

characteristics of the structure. This relationship served as a basis for

defining dynamic elastic snapping and dynamic elastic buckling. When such

a relationship could not be established, the mechanism of dynamic elastic-

)lastic buckling was introduced. The specification of the phenomena was

accompanied by the sr:;ification of the corresponding critical load criteria.

Application of these criteria then led to the development of critical dynamic

load data. The critical dynamic load criteria differed among themselves,

and it was found that for some structural geomet±ies different criteria had to

be employed, depending upon whether the loading was impulsive or of long

duration.

The different critical load criteria and their different application are inti-

mately associated with the static load deflection characteristics of the struc-

ture. This aspect of the dynamic load problem suggests the development of

a classification scheme for this type of problem. Such a scheme can be based

upon the three types of static load deflection characteristics shown in Figure 16.

The first two cases pertain to systems that exhibit snapping under a static

load; these cases are labelled S. 1 and S. 2; they can be referred to as snapping

systems. The distinction between them is based on their different behavior

under the dynamic load. Considering q > 0, we see that the S. 1 system

exhibits dynamic elastic snapping throughout the complete range of pulse

loads Thus, a single critical dynamic load criterion can be applied to this

type of system. On the other hand, the S. 2 system ex.hibits dynamic elastic

snapping for long duration loads and dynamic elastic plastic buckling for short

duration impulsive loads. Two different critical load criteria are required for
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application over the range of pulse loads. The LLird case shown in

Figure 16 corresponds to a system that exhibits buckling under a static load;

this system is labelled B and can be referred to as a buckling system. Under

a dynamic load it exhibits dynamic elastic buckling or dynamic elastic-plastic

buckling, depending upon whether the loading is of long or short duration.

Again, tvo different critical load criteria are required for the complete range

of pulse loads.

This type of classification scheme should be applicable to other types of

structoral elements (e. g., domes, cylinders, columns) that are commonly

encouatered in elastic stability theory. Th- scheme should aid in the analysis

of the behavior of these systems under dynamic loading. The nondimensional

critical load data presented in Figures 9 and 15 should also serve as a guide

in the design of elastic structures against this type of dynamic loading.
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APPENDIX

PARTIAL DIFFERENTIAL EQUATIONS OF MOTION

The partial differential equations governing the behavior of the shallow arch

and the circular ring are presented below for the purpose of reference. A

detailed development of these equations can be found in References 6 and 8.

Shallow Arch

The nondimensional form of this equation is written (see Nomenclature for

definitions) as

II
WhrI- -deoe -h nta ntesd oiino h rh

~i d~r q aid2dg

az~

aT 2~+q Al
8T

Where i (g) denotee' ' e initial unstressed position of the arch,

e sine

The integral that appears in the third term of Eq. A-1 describes the stretch-

ing of the mddle surface of the arch produced by the transverse displace-

ment. The termY a o./3T represents a viscous damping force, this term

being employed as a simple means Gf including the effect of damping in the

The function r(g,T) is described by

'](g,T) e sing + al(T) sing + a,(7) sin 2g (A-Z)

A-1



Substitution of this series into Eq. A-I leads to a pair of coupled nonlinear

equations governing the generalized coordinates al(r) and a,(r).

Cir-ular Ring

The deformation of the ring is based upon the assumptions of the Winkler

theory of curved beams. The partial differential equations governing the

radial displacement (8, T) and the circumferential displacement 41(o, T) of the

middle surface of the ring are

+ a + Y) h a_ + z--+]

( K [ o8 +) q(l (A-3)
o E 0 a o a  )  

-%-0.

a e [o (0 l + f,- + ~ +e (A-4)

and where c denotes the middle surface strain,

+! )Z + Z

Z ao ae

iga;n, a viscous damping term has been included in the equation as a simple

means of incorporating the efffct of damping. The displacement components

are represented by the expressions

t(O,T) = ro(r) I rm(T) sin m6

(, r) = C (T ) cos mO (A-6)m

A-2



Substitution of Eq. A-6 into Eqs. A-4 and A-5, followed by application of the

Galerkin method, leads to a set of ordinary differential equations governing

the generalized coordinates r (T), r (T), and cm(T).

A-3
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